

Stimulating Innovation

CSLF Technical Groups Workshop JUNE 23, 2003

Takashi OHSUMI

Research Institute of Innovative Technology for the Earth

Carbon Dioxide capture

- Amine scrubbing from flue gases of the large-scale stationary sources
- Capture technology exists in a scale of 3000 MMTCO₂/day
- Total cost of either ocean or subsurface storage is ca 50USD/ton CO₂storage
- R&D on novel capture technologies is now being challenged

Sequestration

Where can we put CO₂?

- ocean
- underground

capacity is enough cost issue & public acceptance is the key

Government-supported Study Programs in Japan on CO₂ Sequestration

Target technology	Period of the study	Funding
injection to depleted oil & gas fields and use in EOR	FY1990	NEDO
general disposal options of CO ₂ from power	FY1991 to FY1998	Agency for Energy &
stations, to ocean and underground		Resources
ocean sequestration (dissolution type)	FY1997 to FY2002	NEDO
aquifer sequestration	FY2000 to FY2004	NEDO & METI
ECBM	FY2002 to FY2006	METI
impact assessment methodology and dilution	FY2002 to FY2006	METI
technology by moving-ship for ocean sequestration		
injection to geothermal field	FY2002 to FY2004	NEDO
monitoring of the CO ₂ behavior underground	FY2002 to FY2004	NEDO

CO₂ INJECTION TO DEPTHS energy penalty of sequestration processes

- The hydrostatic pressure :the zero-th order barrier for the gas isolation from the atmosphere
- For every gas molecule, regardless of the chemical species, the compression energy from a normal gaseous state to a condensed state is almost the same.
- This means that the energy penalty in the process of compression for the mixture of gases containing CO₂ is inversely proportional to the CO₂ contents the gas mixture,
- Without separation of CO₂ from the other gases, the compression energy of the whole gas mixture would become too much large.

Storage mechanism

3. Limestone
Neutralization:
Storage as
Ca ²⁺(added) + CO₃=

2. Dilution:
Stored as HCO₃⁻
through reaction:
CO₂ + CO₃⁼ + H₂O
→ 2HCO₃⁻

1.Ocean floor Lake or near injection point underground:Liquid CO₂

How we can stabilize atmospheric CO₂ level

Uptake potential of surface Earth

IPCC Special Report on CO₂ Capture & Storage

- The first Lead Author meeting was held in Oslo, July 2-4, 2003
- To be completed in mid-2005
- Basis for the negotiation on UNFCCC
- Inventory issue is the key